The avian equivalent of Spemann’s organizer, Hensen’s node, begins to lose its ability to induce a nervous system from area opaca epiblast cells at stage 4+, immediately after the full primitive streak stage. From this stage, the node is no longer able to induce regions of the nervous system anterior to the hindbrain. Stage 4+ is marked by the emergence from the node of a group of cells, the prechordal mesendoderm. Here we have investigated whether the prechordal region possesses the lost functions of the organizer, using quail-chick chimaeras to distinguish graft- and host-derived cells, together with several region-specific molecular markers. We find that the prechordal region does not have neural inducing ability, as it is unable to divert extraembryonic epiblast cells to a neural fate. However, it can confer more anterior character to prospective hindbrain cells of the host, making them acquire expression of the forebrain markers tailless and Otx-2. It can also rescue the expression of Krox-20 and Otx-2 from nervous system induced by an older (stage 5) node in extraembryonic epiblast. We show that these properties reflect a true change of fate of cells rather than recruitment from other regions. The competence of neuroectoderm to respond to anteriorizing signals declines by stages 7-9, but both posteriorizing signals and the ability of neuroectoderm to respond to them persist after this stage.

You do not currently have access to this content.