We have cloned a Drosophila homologue (D-gsc) of the ver- tebrate homeobox gene goosecoid (gsc). In the Gsc proteins, the pressure for conservation has been imposed on the homeodomain, the functional domain of the protein: sequence homology is limited to the homeodomain (78% identity) and to a short stretch of 7 aminoacids also found in other homeoproteins such as Engrailed. Despite this weak homology, D-gsc is able to mimic gsc function in a Xenopus assay, as shown by its ability to rescue the axis development of a UV-irradiated embryo. Moreover, our data suggest that the position of insect and vertebrate gsc homologues within a regulatory network has also been conserved: D-gsc expression is controlled by decapenta- plegic, orthodenticle, sloppy-paired and tailless whose homo- logues control gsc expression (for BMP4 and Otx-2), or are expressed at the right time and the right place (for XFKH1/Pintallavis and Tlx) to be interacting with gsc during vertebrate development. However, the pattern of D- gsc expression in ectodermal cells of the nervous system and foregut cannot easily be reconciled with that of ver- tebrate gsc mesodermal expression, suggesting that its precise developmental function might have diverged. Still, this comparison of domains of expression and functions among Gsc proteins could shed light on a common origin of gut formation and/or on basic cellular processes. The identification of gsc target genes and/or other genes involved in similar developmental processes will allow the definition of the precise phylogenetic relationship among Gsc proteins.

You do not currently have access to this content.