γ-aminobutyric acid (GABA) is the major inhibitory neu-rotransmitter in the adult mammalian central nervous system. However, GABA depolarizes immature rat hip-pocampal neurons and increases intracellular Ca2+ ([Ca2+]i). Here we show, that GABA and the GABAA receptor agonist muscimol induce c-Fos immunoreactivity and increase BDNF mRNA expression in embryonic hip-pocampal neurons cultured for 5 days. In contrast, after 3 weeks in culture, GABA and muscimol failed to induce c-fos and BDNF expression. Fura-2 fluorescence microscopy revealed that muscimol produces a dihydropyridine-sensitive transient increase in [Ca2+]i, comparable to the effect of the non-NMDA receptor agonist kainic acid in neurons cultured for 5 days, but not in 3-week-old cultures. The increase in c-Fos immunoreactivity and BDNF mRNA levels by GABA were dependent upon the activation of voltage-gated Ca2+ channels, as shown using the L-type specific Ca2+ channel blocker nifedipine. The differential regulation of c-fos and BDNF expression by GABA and muscimol in developing and mature hippocampal neurons is due to a switch in the ability of GABAA receptors to activate voltage-gated Ca2+ channels. These observations support the hypothesis that GABA might have neurotrophic effects on embryonic or perinatal hippocampal neurons, which are mediated by BDNF.

You do not currently have access to this content.