Fused (fu) is a segment polarity gene whose product is maternally required in the posterior part of each segment. To define further the role of fused and determine how it interacts with other segmentation genes, we examined the phenotypes obtained by combining fused with mutations of pair rule, homeotic and other segment polarity loci. When it was possible, we also looked at the distribution of corresponding proteins in fused mutant embryos. We observed that fused;naked (fu;nkd) double mutant embryos display a phenotypic suppression of simple mutant phenotypes: both naked cuticle and denticle belts, which would normally have been deleted by one of the two mutants alone, were restored. In fused, mutant embryos, engrailed (en) and wingless (wg) expression was normal until germ band extension, but partially and completely disappeared respectively during germ band retraction. In the fu;nkd double mutant embryo, en was expressed as in nkd mutant at germ band extension, but later this expression was restricted and became normal at germ band retraction. On the contrary, wg expression disappeared as in fu simple mutant embryos. We conclude that the requirements for fused, naked and wingless activities for normal segmental patterning are not absolute, and propose mechanisms by which these genes interact to specify anterior and posterior cell fates.

You do not currently have access to this content.