In the series of local gene activations that occur during early Drosophila development, the striped expression patterns of the pair-rule genes provide the first indication of segmental periodicity. The experiments that we report here address the question of how these patterns arise, by studying the regulation of one of these genes, hairy. We show that each of the seven stripes of hairy expression is controlled by a distinct subset of cis-acting regulatory elements, some mediating transcriptional activation and others transcriptional repression. In general, elements necessary and sufficient for triggering a particular stripe response are clustered on the DNA and appear to overlap or be interspersed with elements involved in at least one other stripe response. Our results extend previous findings suggesting that periodic hairy expression arises by a decoding process in which each stripe is triggered by particular combinations or concentrations of regulatory factors. These regulatory factors are likely to include the products of the gap class of segmentation genes that are required for activating or positioning particular subsets of hairy stripes and are expressed with overlapping distributions during early embryogenesis.

You do not currently have access to this content.