Two muscle differentiation programs, acetylcholinesterase and tropomyosin-containing filaments and fibrils, occur together in the same cleavage-arrested zygotes (1-celled) of the ascidian Ciona intestinalis. Coexpression in such undivided but developing ‘embryos’ is consistent with the idea that separate elements of muscle differentiation are related at some regulatory level, perhaps through a single multi-gene regulatory factor. Fertilized Ciona eggs were exposed to cytochalasin B for 20 h and then briefly reacted histochemically for acetylcholinesterase activity. Strongly reacting specimens were selected and processed for transmission electron microscopy to reveal regions of muscle ultrastructure. Every acetylcholinesterase-reactive zygote tested contained muscle contractile elements; no example lacking acetylcholinesterase was found with myofilaments and myofibrils. As demonstrated by immunogold labelling, a polyclonal antibody to tropomyosin from Ciona adult body wall reacted differentially with the presumed ultrastructural muscle elements in cleavage-arrested zygotes. Site-specific reactions were also observed in larval tail muscle and the siphon muscles of postmetamorphic zooids.

You do not currently have access to this content.