ABSTRACT
In early amphibian development, the mesoderm is formed around the equator of the blastula in response to an inductive signal from the endoderm. A screen of candidate substances showed that a small group of heparin-binding growth factors (HBGFs) were active as mesoderm-inducing agents in vitro. The factors aFGF, bFGF, kFGF and ECDGF all show similar potency and can produce inductions at concentrations above about 100 pM. The product of the murine int-2 gene is also active, but with a lower specific activity. Above the induction threshold there is a progressive increase of muscle formation with dose. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues. All inner blastula cells are competent to respond to the factors but outer cells, bearing oocyte-derived membrane, are not.
Inducing activity can be extracted from Xenopus blastulae and binds to heparin like the previously described HBGFs. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin.
The competence of ectoderm to respond to HBGFs rises from about the 128-cell stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of relative molecular mass about 130 ×103. The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro.
In the embryo, the induction in the vicinity of the dorsal meridian is much more potent than that around the remainder of the marginal zone circumference. Dorsal inductions contain notochord and will dorsalize ventral mesoderm with which they are later placed in contact. This effect might be due to a local high bFGF concentration or, more likely, to the secretion in the dorsal region of an additional, synergistic factor. It is known that TGF-β-1 and -2 can greatly increase the effect of low doses of bFGF, although it has not yet been demonstrated that they are present in the embryo. Lithium salts have a dorsalizing effect on whole embryos or on explants from the ventral marginal zone, and also show potent synergism when applied together with HBGFs.