To ensure normal development, most animals have evolved a number of mechanisms to block polyspermy including prevention of binding to surface coats as well as sperm-egg fusion. Ascidian sperm bind to vitelline coat (VC) glycosides. In the genus Ascidia, N-acetylglu-cosamine (GlcNAc) is the ligand to which sperm bind. The number of sperm bound to the VC is biphasic following fertilization; sperm binding increases through the first minute or so, then abruptly declines. At fertilization, the eggs of Ascidia callosa, A. ceratodes, A. méntula, A. nigra and Phallusia mammillata release N- acetylglucosaminidase into the sea water (SW). This has been shown to inactivate VC GlcNAc groups, blocking the binding of supernumerary sperm and polyspermy in A. nigra. This block to polyspermy is inactivated by GlcNAc (2mm) or 150mm-Na+ (choline substituted) SW. These treatments are not additive and therefore probably affect the same process. In A. callosa, fertilization in low Na+ SW causes a 60 % decline in enzyme release and a similar increase in the number of sperm remaining on the VC at 4 min as well as a great increase in polyspermy. Thus the principal block to polyspermy in ascidian eggs involves the release of N-acetylglucosa-minidase which appears to be Na+ dependent. Enzyme activity is found in the supernatant SW by 15 s after fertilization, suggesting that it is stored very near the egg surface. Histochemical staining of whole eggs and embryos shows loss of surface-associated enzyme activity following fertilization. Like other lysosomal enzymes this N-acetylglucosaniinidase is mannosylated and has an acidic pH optimum.

You do not currently have access to this content.