Abstract
Shaping and bending of the neural plate are cardinal events of neurulation. These processes are initiated in avian embryos shortly after the onset of gastrulation and concluded concomitantly with the completion of gastrulation. The epiblast undergoes extensive morphogenetic movements during gastrulation and neurulation, but the directions, distances, rates, mechanisms and roles of such rearrangements are largely unknown. To begin to understand these morphogenetic movements, we have mapped regional displacements of the epiblast by injecting a fluorescent-histochemical marker into selected prenodal, nodal and postnodal levels of the blastoderm. Lateral epiblast regions (600 μm lateral to the midline and consisting primarily of surface epithelium) are displaced craniomedially, medial regions (300 μm lateral to the midline and consisting of neural plate and preingressed mesoderm) predominantly medially, and midline regions (consisting of neural plate and primitive streak) predominantly caudally. Displacements within the avian neural plate parallel those previously described for the amphibian neural plate. Furthermore, similar tissue displacements occur within the prenodal and postnodal levels of the avian epiblast despite the fact that neurulation is occurring in the former and gastrulation in the latter. Finally, our results show that ectodermal rudiments contained within a single crosssectional level of the embryo are a composite of cells derived from multiple craniocaudal and mediolateral levels. Thus, regional tissue displacements are important events to consider in the analysis of the early morphogenesis of axial and paraxial organ rudiments derived from the epiblast.