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Dietary supplementation of heat-treated Gracilaria and Ulva
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sea bream (Sparus aurata)
Leonardo J. Magnoni1,2, Juan Antonio Martos-Sitcha3, Augusto Queiroz1,4, Josep Alvar Calduch-Giner3,
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ABSTRACT
Intensive aquaculture practices involve rearing fish at high densities.
In these conditions, fish may be exposed to suboptimal dissolved O2

levels with an increased formation of reactive O2 species (ROS) in
tissues. Seaweeds (SW) contain biologically active substances
with efficient antioxidant capacities. This study evaluated the effects
of dietary supplementation of heat-treated SW (5% Gracilaria
vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea
bream subjected to a hypoxic challenge. 168 fish (104.5 g average
weight) were distributed in 24 tanks, in which eight tanks were fed
one of three experimental diets for 34 days: (i) a control diet
without SW supplementation, (ii) a control diet supplemented with
Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12
tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia
(1.3 mg O2 l−1) and subsequent recovery normoxia (8.6 mg O2 l−1).
Hypoxic fish showed an increase in hematocrit values regardless of
dietary treatment. Dietary modulation of the O2-carrying capacity
was conspicuous during recovery, as fish fed SW supplemented
diets displayed significantly higher haemoglobin concentration than
fish fed the control diet. After the challenge, survival rates in both
groups of fish fed SW were higher, which was consistent with a
decrease in hepatic lipid peroxidation in these groups. Furthermore,
the hepatic antioxidant enzyme activities were modulated differently
by changes in environmental O2 condition, particularly in sea bream
fed the Gracilaria diet. After being subjected to hypoxia, the gene
expression of antioxidant enzymes and molecular chaperones in
liver and heart were down regulated in sea bream fed SW diets. This
study suggests that the antioxidant properties of heat-treated SW
may have a protective role against oxidative stress. The nature of

these compounds and possible mechanisms implied are currently
being investigated.
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INTRODUCTION
All aerobic organisms rely on the presence of O2 to obtain energy
via oxidative phosphorylation (OXPHOS) in the mitochondria.
Low environmental O2 (hypoxia) represents a major physiological
challenge, in which cells have to switch energy generation from
OXPHOS to anaerobic glycolysis (Barbour and Turner, 2014).
Mitochondria are not only the major O2 consumers within the cells,
but are also known to be major producers of reactive O2 species
(ROS) (Murphy, 2009). Electron leaking from complex I and III
from the electron transport chain (ETC) in mitochondria are
important sources of ROS formation (Görlach et al., 2015). In
addition to the ETC, there are several other ROS-producing sites in
mitochondria, such as the enzymes pyruvate dehydrogenase and
α-ketoglutarate dehydrogenase (Quinlan et al., 2014; Starkov et al.,
2004). High ROS levels will generate oxidative stress, which may
result in accumulative oxidative damage to DNA, RNA, proteins
and lipids, and may invoke profound functional changes (Birben
et al., 2012). Fish contain multiple antioxidant systems to counteract
the deleterious effects of ROS (Lushchak, 2011). The antioxidant
defence system is formed by substances such as vitamins C and E,
glutathione and carotenoids, together with several enzymes capable
of reducing ROS or oxidized products. In particular, enzymatic
activities in fish, including catalase (CAT), glutathione peroxidase
(GPX) and glutathione reductase (GR), are known to be modulated
by nutritional and environmental conditions (Martínez-Álvarez
et al., 2005). In addition to that, a number of transcriptional factors
are among the ROS targets, responding positively or negatively to
nutrients and to environmental cues by altering gene expression.
One of the most well-characterized transcriptional factors in
mammalian systems is the hypoxia-inducible factor-1 (HIF-1),
which appears to integrate the responses to different primary stimuli
at the level of ROS signalling (Semenza and Wang, 1992).
However, it remains unclear how acute changes in environmental
O2 condition may induce signals for transcriptional regulation of
cell functions in aquatic species, and, most importantly, how this
response could be modulated by nutritional factors.

Seaweeds (SW) are important marine sources of polysaccharides
and the main industrial application is in the hydrocolloids (agar)
industry. However, the agar industry generates large amounts of
solid by-products, which are often discharged. Solid waste agar
extraction from SW source may exhibit various biological activities,Received 16 January 2017; Accepted 3 May 2017
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including anti-oxidant or anti-tumoral properties that are of interest
in livestock production. Furthermore, the heat treatment during agar
extraction was shown to produce additional antioxidant compounds
in the SW by-product (Yoshiki et al., 2009), including an increase in
polyphenol content (Rajauria et al., 2010). Recently, the number
of studies on utilization of SW by-product as a natural source of
functional ingredients has been growing rapidly (Kumar et al.,
2008; Thirunavukkarasu et al., 2013). In fact, SW have been
frequently associated with health benefits due to the radical
scavenging and singlet O2 quenching activity present in dry, raw,
and cooked preparations (Kumar and Brown, 2013; Sachindra et al.,
2010). The presence of antioxidant compounds in SW have been
suggested as an endogenous defence mechanism protecting against
oxidative stress due to extreme environmental conditions (Aguilera
et al., 2002). Dietary supplementation of phytochemicals in animal
feed may enhance not only antioxidant capacities, but also may act
as a low-dose chronic stressor, preparing the cells to resist to severe
stress (Speciale et al., 2011). Red SW, such as Gracilaria
vermiculophylla, are characterized by their pigments, including
chlorophyll a, carotenoids, phycobilins (Cardoso et al., 2014),
halogenated compounds (Amsler, 2008), and polyphenols with
antioxidant activity (Duan et al., 2006; Yuan et al., 2005; Yuan and
Walsh, 2006), whichmake this group of SW promising supplements
in aquatic feeds (Holdt and Kraan, 2011). Dietary supplementation
with G. vermiculophylla and several SW alters the metabolic and
antioxidant responses without compromising the growth of the
European seabass (Dicentrarchus labrax) (Peixoto et al., 2016a,b).
Studies in white shrimp Litopenaeus vannamei fed a diet
supplemented with G. vermiculophylla suggested a modulatory
effect on the antioxidant capacities when animals are subjected to
biotic and abiotic stressors (Chen et al., 2012; Sirirustananun et al.,
2011). Additionally, the green SW Ulva lactuca has been shown to
have potent antioxidant effects when tested in several mammalian
experimental models, which may be related to the presence of
polysaccharides (Hassan et al., 2011; Qi et al., 2005; Wang et al.,
2014), phenols or flavonoids (Farasat et al., 2014), or a combination
of all those compounds (Mezghani et al., 2013). Thus, dietary
inclusion of 5% U. lactuca had beneficial effects on growth
performance in the white spotted snapper (Lutjanus stellatus),
although high levels (20%) of U. lactuca may produce hepatic
damage (Zhu et al., 2016).
The gilthead sea bream (Sparus aurata) is an opportunistic feeder

that consumes SW as part of its natural diet (Arias, 1980; Pita et al.,
2002), being an important species in terms of total aquaculture
production in southern Europe. Moreover, S. aurata has become a
valuable animal model on nutritional and environmental studies.
Cultured fish species in floating sea cages may be exposed to lowO2

levels (Remen et al., 2015). In addition, Remen et al. (2015) has
shown in sea bream that the limiting O2 saturation value (LOS, also
termed as Pcrit) is approximately 2.3 mg O2 l−1 at 19°C, which is
within the average range of Pcrit value reported by Rogers et al.
(2016) for other marine species. S. aurata increases hepatic
antioxidant enzyme activities when subjected to hypoxia (Pérez-
Jiménez et al., 2012b), and modulates the hepatic expression of
several genes involved in β-oxidation, oxidative stress response, and
energy generation in mitochondria in response to different dietary
lipid sources (Pérez-Sánchez et al., 2013; Saera-Vila et al., 2009).
Also, the oxidative status of sea bream is improved upon dietary
supplementation with essential amino acids when fed plant protein-
based diets (Sitjà-Bobadilla et al., 2005) or when antioxidants, such
as methionine and white tea, are supplied in the diet (Pérez-Jiménez
et al., 2012a).

The current study evaluated the effects of dietary supplementation
with heat-treated G. vermiculophylla or U. lactuca, followed by
acute hypoxia and subsequent recovery, on the metabolic profile and
antioxidant capacity in sea bream juveniles. Additionally, the
transcriptional level of selected markers associated with oxidative
stress and mitochondrial activity were evaluated in liver and heart.
Both are target tissues in studies on energy use and redox balance
during hypoxia (Everett et al., 2012; Hermes-Lima et al., 2001).

RESULTS
Fish performance
Zootechnical parameters during the feeding trial are presented in
Table 1. No significant differences as a result of dietary treatment
were observed for any of the parameters analysed.

Accumulative mortality during hypoxia and recovery
The accumulative mortality observed in sea bream subjected to
hypoxia and subsequent recovery differed between dietary treatments
(Fig. 1). 15 h after subjecting the animals to hypoxia, the
accumulative mortality was significantly higher in sea bream
fed the control diet than in those fed the Gracilaria diet [P<0.05,
21.4±4.1 and 3.6±3.6%, respectively (mean±s.e.m.)]. This
differential mortality between dietary treatments became more
marked at the end of the hypoxia challenge. After 24 h of hypoxia,
the accumulative mortality of fish fed the control diet was
significantly higher than in sea bream fed both Gracilaria and Ulva
diets (P<0.05, 71.4±5.8, 39.3±3.6, and 46.4±3.6%, respectively).

Blood and plasmatic parameters
Changes in selected blood and plasma parameters as an effect of diet
and environmental O2 condition are presented in Table 2. No
significant differences were observed in the hematocrit (Hct),
haemoglobin (Hb), or mean corpuscular Hb concentration (MCHC)
values between fish fed different diets. Fish showed changes in the
values of the three blood parameters when subjected to changes in
environmental O2 condition, but no interaction with the dietary
treatment was detected. Fish subjected to hypoxia showed
significant higher Hct values than in normoxia (P<0.01).
Nevertheless, in contrast to the Gracilaria group, the Hct in fish
fed the control or Ulva diets was significantly reduced at recovery
(P<0.05). On the other hand, haemoglobin (Hb) concentration
remained unchanged in fish fed SW-supplemented diets, although
showed a significantly increase in hypoxia in fish fed control
diet (P<0.05). Also, in fish fed control diet, Hb concentration at
recovery showed lower values than at normoxia (P<0.05).
Regarding changes in MCHC, the response of the group fed
Ulva to fluctuations in environmental O2 condition was distinct
from the other dietary treatments, as the value for this parameter

Table 1. Zootechnical parameters of sea bream fed seaweed-
supplemented diets for 34 days

Diet

Parameters Control Gracilaria Ulva

Initial BW (g) 103.7±1.0 105.2±1.5 104.5±1.1
Final BW (g) 120.0±1.9 124.8±1.9 122.0±1.6
WG (% BW) 15.7±1.1 18.7±1.4 16.7±0.9
FCR 2.2±0.1 1.8±0.2 1.9±0.1

BW, body weight; WG, weight gain (% BW); FCR, fed conversion ratio. Data
presented are mean±s.e.m. (n=8). No significant differences were found
between the dietary treatments (P>0.05, one-way ANOVA, followed by
Holm-Sidak test).
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was lower at hypoxia (P<0.05), showing a partial recuperation
during the recovery.
Environmental O2 condition and diet significantly affected

cortisol levels, also displaying interaction (P<0.01). In normoxia,
cortisol levels were significantly lower in fish fed Gracilaria diet
when compared to the other dietary treatments (P<0.05). Fish
subjected to hypoxia showed increased cortisol in all the dietary
treatments, displaying a significant decline on the level of this
hormone at recovery (P<0.01). However, during hypoxia and
recovery, fish fed Gracilaria or Ulva diets showed significantly
higher cortisol levels than these fed the control diet (P<0.01).
Environmental O2 condition, but not diet, showed a significant

effect on lactate. An interaction between environmental O2

condition and diet was detected. The concentration of plasma
lactate was significantly higher at hypoxia than at normoxia or

recovery for all the dietary treatments (P<0.01, four- to sevenfold-
increases/decreases). In hypoxia, fish fed Ulva diet showed
significantly higher lactate than fish fed the control diet (P<0.01).

Hepatic oxidative stress markers
The effects of SW supplementation and environmental O2 condition
on selected hepatic oxidative stress markers are presented in Table 3.
Both environmental and dietary factors significantly altered lipid
peroxidation (LPO) (P<0.001 and =0.01, respectively), also
displaying interaction (P<0.01). In particular, LPO was
significantly higher during hypoxia for all dietary treatments
(P<0.05). However, LPO activity was differentially modulated by
dietary treatments during the recovery period, showing the highest
values in fish fed the control diet when compared to fish fed SW-
supplemented diets (P<0.01).

Neither environmental nor dietary factors significantly altered
catalase (CAT) activity, although an interaction between both
factors was detected (P<0.01). Changes in CAT activity were
noticeable in fish fed the control andGracilaria diets, as the activity
for this enzyme during hypoxia increased or decreased, respectively
(P<0.05). A significant lower CAT activity was measured in
hypoxic fish fed Gracilaria diet when compared to the control
diet (P<0.05). Conversely, changes in CAT activity were less
pronounced in fish fed Ulva diet.

Environmental O2 condition, but not diet, significantly altered
GR activity (P<0.001), and no interaction was detected. Hypoxia
produced an increase, whereas recovery induced a decrease of GR
activity, regardless of the dietary treatment (P<0.001). However,
GR activity in fish fed Gracilaria showed a sharper decrease during
recovery with values even below than in normoxia (P<0.05).
Changes in GPX activity with different environmental O2 condition
were less conspicuous in all dietary groups (P<0.05). Diet did not
affect GPX activity, although an interaction with environmental O2

condition was detected (P<0.01). A significant decrease in GPX
activity was observed in fish fed Gracilaria diet during hypoxia
(P<0.01). The GPX activity was increased at recovery on fish fed
Gracilaria diet, whereas the opposite response was observed on
those fish fed control diet. No significant differences in GST activity
was detected in fish fed different diets or subjected to changes

Fig. 1. Changes in accumulative mortality of sea bream fed seaweed-
supplemented diets and subjected to hypoxia followed by normoxia
(recovery). Data are represented as mean±s.e.m. of four tanks per treatment.
Bars with different letters indicate significant differences between dietary
treatments (P<0.05, one-way ANOVA, followed by Holm-Sidak test).

Table 2. Changes in several parameters in blood and plasma of sea bream fed seaweed-supplemented diets in normoxia or subjected to hypoxia
followed by normoxia (recovery)

Diet P-value

Parameter OC Control Gracilaria Ulva OC Diet I

Hematocrit (%) N 23.8#±1.5 27.0#±1.8 26.4#±1.4 <0.001 0.257 0.630
H 36.5*±2.6 33.9*±2.2 37.6*±3.4
R 22.7#±1.7 28.3#*±2.0 27.2#±2.4

Haemoglobin (g dl−1) N 7.0#±0.4 6.7±0.4 7.1±0.3 <0.001 0.799 0.169
H 8.7*±0.5 7.8±0.4 8.4±0.5
R 5.7@±0.2 7.3±0.3 6.7±0.2

MCHC (g dl−1) N 27.5±0.7 25.2±0.7 27.2#±0.7 0.002 0.593 0.239
H 24.1±1.3 23.7±2.1 21.4*±0.7
R 25.4±1.1 26.1±1.3 25.3#*±1.3

Cortisol (ng ml−1) N 36.9a#±14.7 13.2b#±8.1 32.5a#±13.9 <0.001 <0.001 <0.001
H 107.6a*±11.9 148.6b*±19.5 162.7b*±4.6
R 9.0a@±5.6 42.9b@±13.9 45.6b#±28.2

Lactate (mM) N 1.8#±0.2 1.5#±0.1 1.3#±0.1 <0.001 0.562 0.030
H 7.2a*±0.5 8.6ab*±0.9 9.2b*±1.0
R 1.8#±0.2 1.4#±0.2 1.4#±0.4

OC, oxygen condition; N, normoxia; H, hypoxia; R, recovery; I, interaction; MCHC,mean corpuscular haemoglobin concentration. Data are represented asmean±
s.e.m. (n=14 fish for normoxia in all dietary groups, 5-7 fish for the remaining conditions/groups). Superscript letters indicate significant differences between
dietary treatments. Superscript symbols indicate significant differences between conditions (P<0.05, two-way ANOVA, followed by Holm-Sidak test).
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in environmental O2 condition. No interaction was detected for
GST activity.

Gene expression analyses in liver and heart
Data on hepatic and cardiac gene expression in fish fed the dietary
treatments under normoxia and recovery are presented in Tables S2-
S5. The calculated values for both OXPHOS and FA oxidation
algorithms did not reveal any dietary effects, but importantly the
OXPHOS index was consistently lower in normoxia than in
recovery fish in both tissues (Fig. 2A,B). The opposite pattern was
reported for the CPT1A/CS algorithm (Fig. 2C,D).
Gene by gene, up to six genes were differentially expressed in

liver under normoxia or recovery when Gracilaria and control
treatments were compared (Fig. 3A). The expression profile for
Gracilaria fish under normoxia was a significantly down-regulated
response of antioxidant defence enzymes (GPX4, GR, and PRDX3)
and molecular chaperones (GRP-75). During recovery, the down-
regulated response was maintained for GPX4 and PRDX3,
including HIF-1α and uncoupling protein 1 (UCP1). A similar
pattern was observed in fish fed Ulva diet (Fig. 3B), and the
expression of six genes associated to antioxidant defence (GPX4,
GR, PRDX3), molecular chaperones (GRP-94 and GRP-75), and
GH/IGF axis (GHR-II) were down-regulated under normoxic
conditions. Among them, GPX4, GR, PRDX3 and GRP-75 were
identified as coincident down-regulated genes in fish fedGracilaria
and Ulva diets under normoxic conditions. Conversely, only one
gene involved in CAT was up-regulated during recovery in fish fed
theUlva diet. Therefore, the magnitude (1 gene instead of 4) and the
direction of change (up-regulation versus down-regulation) were
highly influenced by the dietary treatment during recovery.
In heart, Gracilaria-supplemented diet triggered the up-

regulation of OXPHOS markers (COXII) and antioxidant
enzymes (CAT) under normoxic conditions. Conversely, during
recovery, Gracilaria-supplemented diet down-regulated the
expression of HIF-1α, oxidative enzymes (ECH), antioxidant
enzymes (PRDX3, PRDX5) and molecular chaperones (GRP-94,
GRP-75) (Fig. 4A). In fish fed the Ulva diet, changes in gene
expression were only observed in the recovery group with a

significant down-regulation of ECH, PRDX3, GRP-94 and GRP-75
(Fig. 4B). These genes were recognized as common regulated genes
in fish fed both Gracilaria and Ulva diets during recovery.

DISCUSSION
Fish in intensive aquaculture practices are exposed to
environmentally stressful conditions, particularly to fluctuations in
O2 availability, as the activity involves rearing animals at high
density. This study evaluated the role of dietary supplementation of
heat-treated SWon the metabolic profile and antioxidant capacity in
sea bream juveniles, during and after an acute hypoxic event. Awide
range of commercial products may be utilized to the aqua-feeds
industry if it is confirmed that the antioxidant defences of fish are
mediated by heat-treated SW.

Physiological parameters analysed in blood and plasma of
sea bream confirmed the effectiveness of the hypoxic
challenge
In the present study, sea bream exposed to a severe hypoxia
(1.3 mg O2 l−1) for 24 h responded by increasing the Hct. This
change indicated that sea bream boosted its O2-carrying capacity
during hypoxic condition, in a similar manner as observed in eels
and rainbow trout (Soivio et al., 1980; Wood and Johansen, 1972).
Such enhancement in O2-carrying capacity may be caused by a
swelling, release and/or formation of erythrocytes, and plasma
volume reduction (Gallaugher and Farrell, 1998). Nevertheless,
changes observed in the current study due to the hypoxic condition
could be explained by erythrocyte swelling alone (Jensen et al.,
1993), as Hb concentration and MCHC remained similar to
the normoxic values. Surprisingly, dietary modulation of the
O2-carrying capacity was conspicuous during recovery, but not
during hypoxia. The Hct in fish fed control and Ulva diets at
recovery was significantly reduced when compared with hypoxic
values, in contrast with the group fed Gracilaria diet, where values
for this parameter still remained high during recovery. This suggests
that dietary modulation by Gracilaria may stimulate erythrocyte
release and/or formation, although further research needs to address
this possible outcome.

Table 3. Changes in stress markers in liver of sea bream fed seaweed-supplemented diets in normoxia or subjected to hypoxia followed by
normoxia (recovery)

Diet P-value

Stress marker OC Control Gracilaria Ulva OC Diet I

LPO N 9.1#±0.9 10.2#±1.1 11.0#±0.9 <0.001 0.010 0.004
H 22.9*±6.4 16.2*±3.6 19.5*±4.7
R 16.6a*±2.3 7.2b#±1.1 8.7b#±1.5

CAT N 49.5#±6.4 61.5#±7.4 55.3±6.0 0.826 0.370 0.004
H 87.2a*±20.4 27.1b*±9.8 48.6ab±8.1
R 50.4#±6.1 67.2#±10.0 59.0±10.1

GR N 26.1#±2.8 24.3#*±2.2 23.9#±2.3 <0.001 0.055 0.339
H 54.1*±15.4 35.1#±2.6 54.4*±21.3
R 19.8#±2.3 14.8*±2.2 19.1#±4.2

GPX N 11.8#±0.9 11.6#±0.7 10.8±0.7 0.039 0.140 0.001
H 12.6a#±3.9 3.5b*±0.8 10.7a±2.7
R 7.0*±0.8 10.9#±1.5 10.9±1.5

GST N 371.7±56.5 358.6±47.1 366.9±44.8 0.290 0.329 0.577
H 462.5±157.4 200.0±22.1 331.9±51.8
R 413.1±81.2 418.0±52.4 457.3±92.3

OC, oxygen condition; I, interaction; LPO, lipid peroxidation; CAT, catalase; GR, glutathione reductase; GPX, glutathione peroxidase; GST, glutathione
s-transferase; N, normoxia; H, hypoxia; R, recovery. All the activities are expressed as nmol min−1 mg protein−1, except for CAT and LPO, where activities are
expressed as µmol min−1 mg protein−1 and nmol TBARS g tissue−1, respectively. Data are represented as mean±s.e.m. (n=14 fish for normoxia in all dietary
groups, 5-7 fish for the remaining conditions/groups). Superscript letters indicate significant differences between dietary treatments. Superscript symbols indicate
significant differences between conditions (P<0.05, two-way ANOVA, followed by Holm-Sidak test).
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The current study also showed that sea bream exposed to acute
hypoxia responded by increasing lactate and cortisol concentrations
in plasma. This response is in accordance with the general
acute stress response described for teleosts, which involves
both hypothalamic-sympathetic-chromaffin cell (HSC) and
hypothalamic-pituitary-interrenal (HPI) axes activations
(Wendelaar Bonga, 1997). Interestingly, the cortisol levels are not
only significantly altered by changes in environmental O2

conditions, but also were significantly affected by the diet,
displaying an interaction between both factors. In fish, lactate
accumulation during hypoxia is associated with an increase in
reliance on anaerobic metabolism, as a result of HSC and HPI axis
activation, with the subsequent release of the stress hormones
epinephrine, norepinephrine and cortisol (Vianen et al., 2001). In
most fish species, including sea bream, the increase in cortisol levels
is reached approximately 1 h after exposure to an acute stressor, with
a recovery phase of up to 48 h following, in which cortisol level
reach baseline values (Arends et al., 1999; Mommsen et al., 1999;
Rotllant et al., 2001). Therefore, it is possible that differences in
cortisol levels observed in the dietary groups may be more
conspicuous at a shorter sampling time. Although methodological
limitations prevented us from sampling fish at an earlier time (e.g.
1 h after hypoxia), the expected release and effect of catecholamines
synthesized by the HSC axis may not be ruled out. Thus, this may be
an interesting issue to be addressed in future studies on the
modulatory effects of cortisol and catecholamines released by the
diet formulation. Cortisol has a key role for genomic signalling in
the molecular reprogramming in fish tissues, particularly the liver,
which is critical for coping with stress. As such, cortisol release may
influence the transcriptional regulation of genes involved in energy

use and antioxidant response by binding to glucocorticoid receptors
(Aluru and Vijayan, 2007).

Enzymatic markers related to the oxidative stress response
in liver of sea bream indicate amodulatory role of dietary SW
Previous studies in common carp Cyprinus carpio (Lushchak et al.,
2005), rotan Perccottus glenii (Lushchak and Bagnyukova, 2007),
and medaka Oryzias latipes (Oehlers et al., 2007) showed that
oxidative stress can be induced by hypoxia. All these results are in
line with the animal preparation for coping to oxidative stress
conditions, a mechanism proposed by Hermes-Lima et al. (2015),
and in accordance with the results presented in our study. Although
the mechanisms of hypoxia-induced oxidative stress have not been
clearly established yet, it may be possible that a reduction in the
mitochondrial electron-transport chain efficiency may contribute to
ROS generation (Lushchak, 2011).

Lipid peroxidation is a well-established marker for oxidative
tissue damage, and a good indicator of oxidative stress (Gutteridge,
1995). Several factors, including diet and environmental conditions,
have an impact on the level of lipid peroxidation detected in fish
tissues (Di Giulio et al., 1989; Winston and Di Giulio, 1991). It is
known that dietary amino acids (Pérez-Jiménez et al., 2012b; Sitjà-
Bobadilla et al., 2005) and fatty acid profiles (Pérez-Sánchez et al.,
2013; Saera-Vila et al., 2009) modulate the antioxidant response of
sea bream, particularly when subjected to environmental stressors,
including hypoxia. In the current study, changes in hepatic markers
related to oxidative stress indicate a differential response of sea
bream to variations in environmental O2 condition. A protective
role of SW supplementation is suggested since a decrease in
hepatic lipid peroxidation was detected in those fish fed dietary

Fig. 2. Hepatic and cardiac indexes related to OXPHOS and FA oxidation genes in sea bream fed seaweed supplemented diets in normoxia or
subjected to hypoxia followed by normoxia (recovery). (A,C) Hepatic; (B,D) cardiac. Data are represented as mean±s.e.m. (n=5-7). Bars with different letters
indicate significant differences between dietary treatments (P<0.05, one-way ANOVA, followed by Holm-Sidak test).
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SW-supplemented diets, but not in fish fed the control diet,
particularly during recovery. This protective role is reinforced by the
differential survival rate observed during hypoxia/recovery of sea
bream fed SW-supplemented diets when compared to fish fed the
control diet. Additional support for this observation is provided by a
low CAT activity detected in liver of sea bream fed the Gracilaria
diet and exposed to hypoxic condition. CAT activity, mainly
associated with peroxisomes, is linked to the protection of the liver
from the elevated concentrations of hydrogen peroxide (H2O2)
generated by ROS (Di Giulio et al., 1989; Winston and Di Giulio,
1991). The role of CAT in the protection against ROS formation is
displayed by the high activity of this enzyme found in the liver of sea
bream during hypoxia, particularly in the group fed the control diet.
GPX and GR are enzymes involved in the antioxidant response to

environmental stress in aquatic organisms (Winston, 1991; Winston
and Di Giulio, 1991). GPX function is to reduce lipid hydro-
peroxides to alcohols generated by ROS (Di Giulio et al., 1989). In
parallel, the function of GR is to re-establish antioxidant capacity
(Di Giulio et al., 1989). The current study showed that the activity of
GR and GPX hepatic enzymes were altered in response to
environmental O2 fluctuations, with GPX activity showing a
significant reduction in the Gracilaria group during hypoxia. In

summary, our results suggested an imbalance between prooxidant/
antioxidant in liver of sea bream, displayed by changes in the
activities of several enzymes linked to oxidative stress in response to
changes in the environmental O2 condition, a response that was
shown to be diet-modulated.

The transcriptional responses in heart and liver of sea bream
indicate dietary SW supplementation takes a protective role
The hypoxia switch from OXPHOS to anaerobic glycolysis results
in reduced mitochondria O2 consumption and enhanced NADH
production from glycolysis (Frezza et al., 2011). Furthermore,
experimental evidence indicates that the gene expression of enzyme
subunits of the mitochondrial respiratory chain is highly regulated in
a tissue-specific manner by the type and intensity of environmental
stressor in gilthead sea bream (Bermejo-Nogales et al., 2014). In the
present study, the OXPHOS ratio, taken as the index of Complex I
(primary electron donor) versus Complex IV (final O2 acceptor),
was higher in aerobic cardiac muscle than in liver. Importantly, the
same trend was even more evident when comparing normoxia
versus recovery in both liver and heart. The OXPHOS ratio could
reflect the importance of mitochondrial activity and respiration,
whereas the overall balance among encoded catalytic subunits
(ND2, ND5, COXI, COXII) or even other enzymatic complexes can
provide an estimation of changes in the respiratory chain efficiency
(Theron et al., 2000). Thus, an increased OXPHOS ratio could be
indicative of improved capacity to aerobically generate energy

Fig. 3. Fold-changes of mRNA expression levels of differentially
expressed genes in liver of sea bream fed seaweed-supplemented diets
and subjected to normoxia or to hypoxia followed by normoxia
(recovery). (A) Gracilaria versus control; (B) Ulva versus control. Data are
represented as mean±s.e.m. (n=5-7). Asterisks indicate significant differences
with respect to the control diet group within each environmental O2 condition
(P<0.05, Student t-test).

Fig. 4. Fold-changes of mRNA expression levels of differentially
expressed genes in heart of sea bream fed seaweed-supplemented diets
and subjected to normoxia or to hypoxia followed by normoxia
(recovery). (A) Gracilaria versus control; (B) Ulva versus control. Data are
represented as mean±s.e.m. (n=5-7). Asterisks indicate significant differences
with respect to the control diet group within each environmental O2 condition
(P<0.05, Student t-test).
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surplus after a hypoxic episode, allowing a greater electron transport
through mitochondria when O2 concentrations are restored. Citrate
synthase (CS) is a marker of mitochondrial abundance (Larsen et al.,
2012; Rabøl et al., 2009) and a measure of the Krebs cycle capacity,
and the enzyme function is coordinated with the respiratory
chain enzyme activities (Holloszy et al., 1970). The decreased FA
oxidation/mitochondrial abundance ratio during recovery highlights
an enhancement of aerobic capacity mediated by the greater relative
importance of CS in relation to CPT1A (mitochondrial FA-carrier),
as noted by the lower CT values (higher mRNA abundance) in CS
gene with almost no variation in CPT1A during recovery (data not
shown). This fact may indicate that the acetyl-CoA produced by
β-oxidation of FAs is rapidly used during hypoxia recovery to feed
the Krebs cycle and to produce NADH and FADH2, which in turn
are used by the OXPHOS pathway to permit a more efficient ATP
production from aerobic respiration. However, the increased
reliance in the use of substrates produced during hypoxia, such as
lactate, could not be ruled out and may also explain the minor
importance of the aerobic fatty acid oxidation pathway during
recovery. In this scenario of hypoxia resilience and recovery, both
OXPHOS and CPT1A/CS indexes were regulated in a tissue-
specific manner by O2 availability, but not by dietary treatment. In
contrast, a number of markers, including transcription factors,
antioxidant and oxidative enzymes, molecular chaperones and
mitochondrial uncoupling proteins were differentially regulated by
dietary supplementation of heat-treated Gracilaria and Ulva during
normoxia and/or recovery as explained below for some of these
differentially expressed genes.
HIF-1α, a well-described regulator of the adaptive response of

fish to changes in environmental O2 availability, is known to up-
regulate the expression of antioxidant enzymes in response to
oxidative stress (Lushchak and Bagnyukova, 2006). In our study,
the expression of this transcription factor was down-regulated
during recovery of the hypoxic episode in both liver and heart of fish
fed theGracilaria diet. This finding might be interpreted as a steady
state of minimized risk of oxidative damage during tissue
reoxygenation, which is perhaps a direct consequence of an
improved and more efficient response to hypoxia exposure. In
heart, and to a lesser extent in liver, this observation was also
supported by the concurrent down-regulation of some down-stream
markers of cell redox balance and oxidative stress, including UCP1,
antioxidant defence enzymes (GPX4, PRDX3, and PRDX5) and
molecular chaperones (GRP-75, GRP-94). However, the down-
regulation of HIF-1 expression in both tissues should be interpreted
cautiously, as this transcriptional factor is mostly post-
transcriptionally regulated. Uncoupling proteins (UCPs) are
mitochondrial transporters that uncouple OXPHOS attenuating
the production of ROS (Rial and Zardoya, 2009). Previous work in
sea bream showed that hepatic UCP1 expression is altered by a wide
range of stressors including confinement and winter cold exposure
(Bermejo-Nogales et al., 2010). GPX4 is a well-described seleno-
peroxidase of vertebrates with a major protective role in oxidative
damage, which inhibits lipid peroxidation by reducing H2O2 and
complex membrane lipid hydroperoxides (Thomas et al., 1990).
GRP-75, also known as mortalin or mitochondrial HSP70, has been
shown to be a stress biomarker in sea bream, with induced hepatic
expression in response to crowding stress and parasite Enteromyxum
leei infections (Bermejo-Nogales et al., 2008; Calduch-Giner et al.,
2012). In a similar way, antioxidant enzymes such as GPX4,
PRDX3, PRDX5, and the molecular chaperone GRP-94 were also
identified as highly stress-responsive elements in crowded fish with
different stress responsiveness according to their nutritional

background (Saera-Vila et al., 2009). Thus, the observed down-
regulation of all these factors in sea bream fed theGracilaria-extract
diet reinforces the idea of a protective effect of the heat-treated SW
supplementation with better recovery after hypoxia, as compounds
with antioxidant properties present in the supplemented dietary
extract may reduce the requirement for antioxidative enzymes.

In fish fed the heat-treated Ulva diet, the expression profile of
differentially expressed genes in the liver tissue also showed amarked
down-regulation of antioxidant-related markers during normoxia.
However, this molecular signature was not maintained during the
recovery stage, which suggests a lower capacity to counteract the
triggered ROS production that occurs during hypoxia in comparison
with the Gracilaria group (Guzy and Schumacker, 2006).
Conversely, the heart of fish fed heat-treated Ulva diet experienced
a down-regulation of antioxidant markers (ECH, PRDX3, GRP-94,
GRP-75) during recovery, but again the number of differentially
expressed markers and the magnitude of the fold-change variation
was lower than in the Gracilaria group. It is also important to note
that in both groups fed heat-treated SW diets the heart showed a more
marked response than liver tissue in terms of the number of
differentially expressed genes during recovery. This feature is not
surprising, since sea bream cardiac muscle was previously reported in
a microarray study to be the most responsive to nutrient restriction
when compared with skeletal white and red muscle (Calduch-Giner
et al., 2014). This probably reflects the high metabolic plasticity of
heart as a tissue that must be highly regulated to maintain its essential
functions. In this context, heart emerges as a highly promising target
tissue for stress responsiveness.

In both SW groups, the transcriptomic results are in accordance
with those of enzyme activity of CAT, GR, GPX. The experimental
evidence of the improved survival rate found in Gracilaria or Ulva
groups is conclusive to the beneficial effect of SW supplementation
in gilthead sea bream diet. Therefore, results observed in this study
are in accordance with the potential protective role of heat-treated
Gracilaria against oxidative stress. Compounds with antioxidant
properties present in this SW extract may reduce the requirement of
antioxidative enzymes, decrease oxidative damage in tissues, and
fish mortalities produced by changes in environmental O2

condition. However, this study did not evaluate antioxidant
content in the SW extracts. Future studies will be required to
identify compounds contained in heat-treated Gracilaria and to
clarify possible mechanisms involved in the antioxidant capacity of
sea bream other than the glutathione system. Differences in the
dietary-induced response observed in Gracilaria and Ulva groups
may be related to the different compounds produced and contained
in the extracts of these red or green SW, respectively. It has been
described that the antioxidant effect of dietary SW, including
Gracilaria sp., may be related to the presence of polyphenols in
their composition (Ganesan et al., 2008; Jiménez-Escrig et al.,
2001; Sachindra et al., 2010; Sreenivasan and Ibrahim, 2007), as
they may break up free-radical chains of oxidation and donate
hydrogen (Duh, 1998). The antioxidant properties of Gracilaria sp.
could be linked to their sulphated polysaccharide content as well
(Costa et al., 2010; Guaratini et al., 2012; Qi et al., 2005; Souza
et al., 2012), as those compounds may act as an electron donors to
minimize the attack of free radicals (Fidelis et al., 2014). On the
other hand, compounds with antioxidant properties which may be
included in the Ulva diet (e.g. polysaccharides, phenols or
flavonoids) appear to be less effective in the Gracilaria diet, due
to differences in the type, quantity or changes produced by the
extraction of such compounds (Reverter et al., 2014; Stengel et al.,
2011). The practical implications of this research for the aquaculture
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industry are clear since the susceptibility of aquatic organisms to
biotic and abiotic stressors is becoming a restrictive factor in fish
produced in intensive aquaculture conditions.

Conclusions
The dietary modulation of the oxidative stress responsiveness in
gilthead sea bream by heat-treated SW was less conspicuous under
normoxia, but became more evident during and after the hypoxic
challenge. The physiological response and survival rate of gilthead
sea bream to changes in environmental O2 condition was highly
modulated by the inclusion of heat-treated SW in the diet. The
observed changes in oxidative stress response reveal the beneficial
effects of the dietary SW supplementation in sea bream, particularly
when Gracilaria vermiculophylla is included in the diet. Both SW
diets also altered oxidative stress response in liver and heart by down-
regulating the gene expression of different antioxidant enzymes and
molecular chaperones during recovery. This study suggests that
compounds with antioxidant properties present in the supplemented
dietary extract reduce the requirement for antioxidative enzymes.

MATERIALS AND METHODS
Animal care and rearing conditions
All procedures were conducted under the supervision of an accredited expert
in laboratory animal science by the Portuguese Veterinary Authority (1005/
92, DGV-Portugal, following FELASA category C recommendations),
according to the guidelines on the protection of animals used for scientific
purposes from the European directive 2010/63/UE. The experiment took
place at the Abel Salazar Biomedical Sciences Institute (ICBAS), University
of Porto (Portugal). This study was approved by the ORBEA (Organismo
Responsável pelo Bem-Estar dos Animais), the Institutional Animal Care
and Use Committee (IACUC) of the ICBAS. Fish were anesthetized with
MS-222 ethyl 3-aminobenzoate methanesulfonate (MS-222, 0.1 g l−1),
buffered with NaHCO3 (0.2 g l−1) for blood collection, and subsequently
sacrificed by decapitation.

Sexually immature gilthead sea bream was provided by IPMA (Instituto
Português do Mar e da Atmosfera, Olhão, Portugal) and reared in
recirculation tanks for acclimation for at least three months before the
trial. During that time fish were fed with a commercial diet (SPAROS,
Portugal) at a maintenance ration with a photoperiod regime that was
artificially regulated into an automatic 12 h:12 h (day:night cycle). Two
weeks prior to starting the trial, sea bream were distributed over 24
experimental tanks (60 l) connected to a water recirculation system at a flow
rate of 250 l h−1. Each experimental tank contained seven fish with an
average weight of 104.5 g (11.65 kg m−3). Temperature (19.0°C), salinity
(38‰), pH (8) and dissolved O2 (above 95% saturation) were fixed and
monitored daily, and regulated whenever necessary.

Diets
G. vermiculophylla and U. lactuca, were produced in land-based IMTA
(Integrated Multitrophic Aquaculture) systems by ALGAPLUS Lda.
(Ilhavo, Portugal). Dried G. vermiculophylla was thermally processed
using hot water at 83°C for 160 min. The mixture was filtered with a cloth
and the agar was recovered through a freeze-thawing process. The solid
product from the thermal process was washed, dehydrated with ethanol and
dried at 60°C overnight under vacuum. U. lactuca was thermally processed
using hot water at 89°C for 152 min. The heat-treated product was filtered and
the solid residue was dried overnight at 60°C under vacuum.

The control diet and two SW diets (5% Gracilaria, 5% Ulva) were
formulated and manufactured by SPAROS Lda. (Olhão, Portugal). Diet
formulation and chemical composition are presented in Table S2. Powder
ingredients, including the heat-treated SW, were ground (<100 micron) in a
micropulverizer hammer mill (Hosokawa Micron, SH1, The Netherlands).
Ingredients were then mixed according to the target formulation in a paddle
mixer (Mainca RM90, Spain) and the mixture was humidified with 25%
water. Diets were cold extruded (below 60°C, pellet size: 2.0 mm) by

means of a low shear extruder (Italplast P55, Italy). Upon extrusion, all
feed batches were dried in a convection oven (OP 750-UF, LTE Scientifics,
UK) for 3 h at 45°C.

Experimental procedure
Tanks were assigned either: (i) a diet without SW (control); (ii) a diet
supplemented with 5% Gracilaria; or (iii) a diet with 5% Ulva using a
randomized block design. Fish were hand-fed two meals per day (09:30 and
16:30 h) for 34 days to apparent satiety. A known quantity of diet was
weighed daily in excess of estimated feed intake and placed in 24 goblets,
one for each tank, and gradually fed to fish. The cessation of feeding was
decided by visual observation of uneaten pellets within 15 min. Uneaten
pellets in the tank were subsequently collected, counted and the total weight
was estimated by taking into account the average weight of the dry pellets.
The actual daily feed intake per tank was then calculated by subtracting the
initial feed in the goblet by the total leftover feed. Nomortality was observed
during the feeding trial.

At the end of the feeding trial, 24 h fasting fish from 12 tanks (n=4 tanks/
dietary treatment) were subjected to a 24 h acute hypoxic condition
(1.3 mg O2 l−1), returning to normoxia (8.6 mg O2 l−1) thereafter. The
remaining 12 tanks (n=4 tanks/dietary treatment) remained under normoxic
conditions during the entire trial. Fish were subjected to an acute severe
hypoxia set to reach 17.5% O2 saturation, below the limiting O2 saturation
value (LOS or Pcrit) reported for this species at 31% O2 saturation at 19°C
(Remen et al., 2015). The low dissolved O2 levels were obtained by using
controlled injection of nitrogen gas into a reservoir tank following a similar
setup as described by Behrens and Steffensen (2007). On this method, the
nitrogen influx into the system was continuously monitored and controlled
by an O2 analyser and regulator system (OXY-REG, Loligo Systems,
Denmark) equipped with a galvanic O2 probe (mini-DO, Loligo Systems,
Denmark, range 0-200% air saturation) using a negative feedback loop
regulating a solenoid valve (Loligo Systems, Denmark) connected to a
nitrogen bottle (see Fig. 5). The O2 probe was calibrated according to
manufacturer’s instructions. The surface of the water in the hypoxic tanks
was covered completely by polycarbonate panels to minimize air exchange.
The dissolved O2 levels were gradually reduced in the 12 hypoxic tanks as
shown in Fig. 6. Twenty-four hours after initiating the hypoxia, dissolved O2

levels in the tanks were gradually returned to normoxia (recovery). Mortality
was directly assessed by visual observation and defined as the point when
the opercular movement ceased in fish at 15 h and 24 h of hypoxia, as well
as during recovery (24 h after cessation of hypoxia challenge).

Fish sampling
Four to eight fish per treatment were randomly selected and sampled
immediately at 24 h of hypoxia (hypoxia) and after 24 h returning to
normoxia (recovery). Similar sampling procedures were used for fish that
remained in normoxic condition throughout the entire trial (normoxia). Fish
were anaesthetized with MS-222 (0.1 g l−1), buffered with NaHCO3

(0.2 g l−1), and then weighed. Blood was collected from the caudal vein
using syringes containing EDTA (0.5 M, pH 8, GIBCO) and plasma was
obtained (5 min, 10.000 rpm at 4°C) and stored at −80°C, until analysed.
After sacrificing the fish by decapitation, heart and liver samples were
immediately dissected and frozen in liquid nitrogen. Samples, stored at
−80°C, were transported either to CIIMAR (Porto, Portugal) to assess
several stress markers or shipped to IATS-CSIC (Institute of Aquaculture
Torre de la Sal, Spain) to perform transcriptomic analyses. Growth
performance parameters were calculated at the end of the experiment.

Blood and plasma analyses
Haemoglobin concentration in blood samples was measured using a kit for
quantitative colorimetric determination (Drabkin, 1001231, SPINREACT,
Sant Esteve de Bas, Spain). Lactate concentration in plasma was quantified
using a commercial kit (UV method, AK00131, NZYTech, Lisbon,
Portugal). Cortisol in plasma samples was quantified using an enzyme
immunoassay (Cortisol ELISA kit, RE52061, IBL International, Hamburg,
Germany). All measurements were performed in triplicates, following the
recommendations provided by the manufacturers.
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Oxidative stress markers in liver
Liver samples were homogenized in phosphate buffer (1/10 vol., 0.1 M pH
7.4). Enzymatic analyses were all carried out with the reaction mixtures and
homogenate dilution established in preliminary tests. Protein concentration
was assayed in homogenates using bovine serum albumin as standard
(Bradford, 1976). LPO was determined by quantifying the presence of
thiobarbituric acid reactive substances (Ohkawa et al., 1979). Catalase (EC
1.11.1.6.) activity was analyzed with hydrogen peroxide (30%) as substrate
(Clairborne, 1985). GR (EC1.8.1.7) and GPX (EC 1.11.1.9.) were evaluated
based on NADPH (Sigma, Portugal) oxidation at 340 nm (Cribb et al.,
1989; Mohandas et al., 1984). Glutathione s-transferase (GST) (EC
2.5.1.18) was determined using 1-chloro-2,4-dinitrobenzene as substrate
(Habig et al., 1974). Changes in absorption were measured at 22°C in a
Power-Wave™ microplate spectrophotometer (BioTek Instruments), and
reactions were performed in triplicates. Substrate was omitted in controls
and background activity was subtracted from that measured in the presence
of substrate.

Gene expression analyses
Total RNA from liver and heart was extracted using a MagMax-96 total
RNA isolation kit (Life Technologies, Carlsbad, CA, USA). RNA
concentrations were obtained with UV absorbance measures (A260/280)
and RNA quality was determined using an Agilent 2100 Bioanalyzer
(Agilent Technologies). RIN (RNA Integrity Number) values were 8-10, for

almost all samples, which was indicative of clean and intact RNA to be used
in quantitative real-time PCR (qPCR) reactions.

Synthesis of cDNA was performed with the High-Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA, USA) using random
decamers and 500 ng of total RNA in a final volume of 100 µl. Reverse
transcriptase (RT) reactions were incubated 10 min at 25°C and 2 h at 37°C.
Negative control reactions were run without RT. qPCR reactions were
performed using an Mastercycler®epgradient S Realplex2 with Realplex
software v.2.2 (Eppendorf, Hamburg, Germany). Diluted RT reactions were
conveniently used for qPCR assays in 25 µl volume in combination with a
SYBR Green Master Mix (Bio-Rad, Hercules, CA, USA) and specific
primers at a final concentration of 0.9 µM (Table S1). The 96-well PCR-
array layout was designed for the simultaneous profiling of a panel of 27
genes, related to oxidative metabolism and oxygen sensing, antioxidant
defense, xenobiotic metabolism, cellular stress response (molecular
chaperones) and growth-promoting action (GH/IGF system) (Table S6).
The program used for PCR amplification included an initial denaturation
step at 95°C for 3 min, followed by 40 cycles of denaturation for 15 s at
95°C and annealing/extension for 60 s at 60°C. All the pipetting operations
were made by means of an EpMotion 5070 Liquid Handling Robot
(Eppendorf, Hamburg, Germany) to improve data reproducibility. The
efficiency of PCRs (>92%) was checked, and the specificity of reactions was
verified by analysis of melting curves (ramping rates of 0.5°C 10 s−1 over a
temperature range of 55-95°C) and linearity of serial dilutions of RT
reactions (>0.99). Fluorescence data acquired during the extension phase
was normalized by the delta-delta Ct method (Livak and Schmittgen, 2001)
using β-actin (Actb) as the housekeeping gene. For multi-gene analysis, data
on gene expression was in reference to the expression levels of ECH in fish
fed the control diet, for which a value of 1 was arbitrarily assigned in each
tissue and environmental O2 condition.

The range of variation for Ct values of comparisons of Actb was lower
than 0.25-0.40 cycles among dietary treatments for a given environmental
O2 condition. Nevertheless, this range was increased up to 0.40-1.10 cycles
between normoxia and recovery. Thus, in order to compare different
environmental O2 conditions, two different algorithms (with no dependance
of housekeeping gene uniformity) related to OXPHOS ([ND2+ND5]/[COXI
+COXII]) and fatty acid oxidation/mitochondria abundance (CPT1A/CS)
were proposed as time-course and tissue-specific markers of oxidative
capacity under different environmental O2 conditions.

Calculations and statistical analyses
Zootechnical parameters were calculated using the tank as the experimental
unit (n=8). Weight gain (WG, %) was calculated as:

WG ¼ ðFBWÞ � ðIBWÞ IBW�1100;

where FBW is the average final body weight (g), and IBW is the average
initial body weight (g).

Fig. 6. Changes in dissolved oxygen (DO) levels during the trial. Sea
bream fed the experimental diets for 34 days were subjected to normoxia
(8.6 mg O2 l−1) or to hypoxia (1.3 mg O2 l−1) followed by normoxia (recovery)
as described in the Materials and Methods section. Sampling points for each
experimental condition are represented as dots.

Fig. 5. Experimental set-up used to
control dissolved oxygen (DO) levels in
the experimental tanks to implement
hypoxia. The system consisted of a loop of
12 tanks with reduced DO levels, which were
separated from the remaining tanks (12) in
normoxia as detailed in the Materials and
Methods section.
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Feed conversion ratio (FCR) was calculated as:

FCR = Total feed intake (g DM) WG�1ðgÞ100:
The accumulated mortality in the hypoxia/recovery groups was calculated

as the percentage of dead fish per tank (n=4), averaging values per dietary
treatment over specific times. Mean corpuscular haemoglobin concentration
was calculated as follows:

ðMCHC; gdl�1Þ ¼ ð½Hb�Hct�1Þ100;
where [Hb] is the concentration of haemoglobin in blood (g dl−1) and Hct
the hematocrit value (%).

For analysis and calculations of physiological parameters, the fish were
used as the experimental unit with a sample size of five to seven per
experimental treatment. However, given that blood and plasma parameters,
as well as enzymatic activities, were not significantly different (P>0.05)
between fish sampled at 24 h or 48 h of normoxia for a given dietary
treatment (see Fig. 6), values for both groups were pooled and expressed as
normoxic values (n=14). Values are presented as means±s.e.m. For
biochemical and enzymatic parameters, a two-way ANOVA analysis was
used for making comparisons between treatments, and a Holm-Sidak post
hoc analysis was used to identify significant differences between treatments.

Changes in relative gene expression for a given tissue and dietary
treatment were analysed by one-way ANOVA followed by the Holm-Sidak
test, or by Kruskal–Wallis H test followed by Dunn’s method, in each case.
Fold-changes of mRNA expression levels in differentially expressed genes
fed under different dietary treatments were analysed with respect to the
control group by Student t-test. The significance level was set at P<0.05. All
analyses were performed using the SigmaPlot Version 13 for Windows.
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Table S1. Forward (F) and reverse (R) primers for real-time PCR. 

Gene Symbol Acc. No. Primer sequences (5’ �Æ 3’) 

Carnitine palmitoyltransferase 1A CPT1A JQ308822 
F:GTGCCTTCGTTCGTTCCATGATC 
R:TGATGCTTATCTGCTGCCTGTTTG 

Enoyl-CoA hydratase ECH JQ308826 
F:GCCCAAGAAGCCAAGCAATCAG 
R:CTTTAGCCATAGCAGAGACCAGTTTG 

Hydroxyacyl-CoA dehydrogenase HADH JQ308829 
F:GAACCTCAGCAACAAGCCAAGAG 
R:CTAAGAGGCGGTTGACAATGAATCC 

Citrate synthase CS JX975229 
F:TCCAGGAGGTGACGAGCC 
R:GTGACCAGCAGCCAGAAGAG 

NADH-ubiquinone oxidoreductase chain 2 ND2 KC217558 
F:TAGGTTGAATGACCATCGTA 
R:GGCTAAGGAGTTGAGGTT 

NADH-ubiquinone oxidoreductase chain 5 ND5 KC217559 
F:CCTAAACGCCTGAGCCCTGG 
R:GCTGTAAACGAGGTGGCTAGAAGG 

Cytochrome c oxidase subunit I COXI KC217652 
F:GTCCTACTTCTTCTGTCCCTTCCTGTTCT 
R:AGGTTTCGGTCTGTAAGGAGCATTGTAATC 

Cytochrome c oxidase subunit II COXII KC217653 
F:ACTGCCTACACAGGACCTTGCC 
R:GTCTGCTTCCAGGAGACGGAATTGT 

Uncoupling protein 1 UCP1 FJ710211 
F:GCACACTACCCAACATCACAAG 
R:CGCCGAACGCAGAAACAAAG 

Uncoupling protein 2 UCP2 JQ859959 
F:CGGCGGCGTCCTCAGTTG 
R:AAGCAAGTGGTCCCTCTTTGGTCAT 

Proliferator-activated receptor gamma 
coactivator 1 alpha 

�3�*�&���. JX975264 
F:CGTGGGACAGGTGTAACCAGGACTC 
R:ACCAACCAAGGCAGCACACTCTAATTCT 

Proliferator-activated receptor gamma 
coactivator 1 beta 

�3�*�&���� JX975265 
F:TCAGAGGAAGAGGCGGAT 
R:GACACAGGTGGAGGATGG 

Hypoxia inducible factor-1 alpha HIF-���. JQ308830 
F:CAGATGAGCCTCTAACTTGTGGAC 
R:TTAGCAAGAATGGTGGCAAGATGAG 

Catalase CAT JQ308823 
F:TGGTCGAGAACTTGAAGGCTGTC 
R:AGGACGCAGAAATGGCAGAGG 
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